

Institute of Process Technology. **Process Automation and** Measuring Technology

VALIDATION OF AN INNOVATIVE CORE STATE DIAGNOSIS SYSTEM FOR SEVERE ACCIDENTS IN PWR BY **USING AN EXPERIMENTAL RIG** M.Eng. Dipl.-Ing. (FH) Sebastian Schmidt

Motivation

Severe accidents in PWR can lead to a core **meltdown** in the reactor pressure vessel (RPV) initate emergency actions for accident ■ To management it is important to recognize the beginning as well as the progress of the core meltdown • Currently no measuring system is available which can detect the processes in the reactor pressure vessel during a core melt accident in a sufficient degree

NPP Three-Mile-Island; *left: final core* state of unit 2

TECHNISCHE UNIVERSITÄT DRESDEN

INNOVATIVE CORE STATE DIAGNOSIS SYSTEM

Functioning – non-invasive measurement of gamma ray distributions

Reactor pressur	e <u>Measuring of gamma</u>	<u>Core state diagnosis model</u>	<u>Monitoring of core</u>
vessel (RPV)	ray distributions		<u>states</u>
(des	RPV Core Normal stroyed) operation	Three diverse, parallel and independent working methods (red blocks) for computer-based and real time capable evaluation of measured gamma ray distributions to determination of core states (coolant level, core deformation)	

Cooperative project

Accidents with core meltdown in NPP Three-Mile-Island (USA, 1979) and NPP Fukushima Dai-ichi (Japan, 2011)

"Non-Invasive Condition Monitoring of Nuclear Reactors for Detection of Level Changes and Deformation of the Core"

INTRODUCTION

In line with the cooperative project between the Technical University Dresden (TUD) and the Institute of Process Technology, Process Automation and Measurement Technology (IPM) of Zittau/ Goerlitz University of Applied Sciences a innovative measurement system for the core state diagnosis during severe accidents in pressurized water reactors (PWR) is going to be developed.

Benefits e.g.

Diverse coolant level measuring | Complete diagnosis for the "In-Vessel phase" of a core meltdown | Time overview for a core meltdown | Estimation of risks during a core meltdown (e.g. steam explosion in the case of RPV re-flooding) | Decision support for plant staff in the case of a core meltdown | No intervention in the system "RPV" | Independent of temperature and pressure in RPV

Schematic representation for the functioning of the core state diagnosis system

Development methodology – simulation data for method development

Methodology for the development of the core state diagnosis system

VALIDATION OF THE CORE STATE DIAGNOSIS SYSTEM

Validation methodology

Experimental rig for validation support

Purpose of the experimental rig:

First validation results

diagnosis system – detection of water levels and

Gamma flux

Simulations data from MCNP simulations and measurement data from the experimental reproduction of defined experimental rig states

source re-location

Results of the identification analysis for methods 1, 2 and 3; green: calculated values, Black dashed: desired values, red: differences between calculated and desired values

SUMMARY

OUTLOOK

- Development of a non-invasive measurement system for core state diagnosis during severe accidents in pressurized water reactors (measurement of **gamma ray distributions** outside the RPV) • For the diagnosis system development of **methods for the** computer-based and real-time capable evaluation of measured gamma ray distributions
- Validation of the core state diagnosis system by using an experimental rig
- ✓ Results of a **first successful validation experiment** show clearly the suitability of the developed core state diagnosis methods - *detection of water levels and source re-location*
- Further validation experiments with slightly modified experimental rig states analysis of the method behavior for unknown gamma ray distributions
- Implementation of the findings and analyzes from the validation experiments in the core state diagnosis system
- Development of parameters for quality evaluation of the data bases (number of gamma ray distributions) for the creation of the core state diagnosis methods
- Testing of the core state diagnosis system with further Monte-Carlo simulation results

Index [-]

		Funding Concept	 SPONSORED BY THE
Project duration:	01.07.2012 - 30.06.2015	"Basic Enerav	
Project leader:	Prof. DrIng. Alexander Kratzsch (IPM); Prof. DrIng. habil. Uwe Hampel (TUD)	Research 2020+"	Federal Ministry
Project employees:	DiplIng. (FH) Daniel Fiß, M.Eng. DiplIng. (FH) Sebastian Schmidt, Steffen Härtelt (IPM); DrIng. Carsten Lange, M.Sc Carsten Brachem (TUD)		of Education and Research
Zittau/Goerlitz University of Applied Sciences Insitute for Process Technology, Process Automation and Measurement Technology (IPM) Theodor-Körner-Allee 16 02763 Zittau Germany www.hszg.de/ipm			

RESEARCH WITHOUT BORDERS